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This memorandum describes a technique for digital

simulation of crew motion disturbances that are described by

random processes of specified power spectral density.

The

purpose of the simulation is to evaluate the performance of

the ATM Pointing Control System under the action of random

crew motion disturbances.
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MEMORANDUM FOR FILE

In a massive spacecraft, such as we have in the
AAP cluster, crew motion disturbances may be treated as
forces and moments applied to specific points. Heretofore
these forces and moments have been described by deterministic

waveforms.(l)(z) These waveforms are suitable for studying

the transient response of a pointing control system such as

on the ATM. They are not appropriate, however, for determining
the long term system performance by a criterion such as the
mean-square pointing error. For this reason MSFC is now
developing so called statistical models of crew motion. These
are just the power spectral densities of forces and moments

for classes of crew motion.

In order to make use of these models in the Bellcomm

simulation of pointing control systems,(z) a technique is

needed for the digital simulation of a random process with a
specified rational power spectral density. This memorandum
describes such a technique. The order of our discussion will be:

(1) Finding the transfer function of a linear filter
which has the property that its output has a speci-
fied power spectral density when its input is a
specified random process.

(2) Finding the differential equation representation
of the filter.

(3) Simulating the solution of the differential equation

(3)

when white noise is the input
(4) Testing the simulation(u).
(5) Example.

1. TRANSFER FUNCTION OF A LINEAR FILTER

Before going into detail on the generation of a
random process, we want to point out that it is always possible
to find the transfer function of a linear filter which produces
a random process with a given rational power spectral density
when driven by a specified random process.
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If one is given a real polynomial S(w) such that
there exists a real polynomical R(w), with the property that
S(w) = R(jw) R(-jw), then it will be possible to uniquely
determine R by multiplying R(jw) R(-jw) and equating coefficients

of wk for k=0, ... n, where n is the order of S(w). This process
yilelds n+l equations in n+l unknowns, which have unique solu-
tions. Therefore, since a rational power spectral density func-
tion S(w) is a ratio of two such polynomials Sl(w)/SE(m)’ the

transfer function of a linear filter P(juw)/Q(jw) can be uniquely
determined.

2. DIFFERENTIAL EQUATION REPRESENTATION OF FILTER

For the remainder of this discussion it will be
assumed that we want to simulate a random process using a fil-
ter with a known rational transfer function. Therefore if n(t)
is some random input signal we have

Input > Filter -  Output
b + b.S + .. + b.sK
ntt) > qes) A
a + a.S+ .. + a_S
o] 1 n

where y(t) is the desired random process, and k<n. P(8)/Q(S)

represents the Laplace transform of the impulsive response of

the filter. We would now like to find the linear differential
egquation which also represents this filter.

We may write

y(8) = n(S) = (b + byS + ..+ kak)
a, + als + .. + anS
Letting
n(S)
Xl(S) = N . + / gn-1 gn
a,/a,  + a;/a, .. a,_1/a,
we get
k
y(8) = 1/a, (b, + bS8+ .. 4+ b, 57). X, (8)
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By rearranging terms in the definition of
Xl(S) we have

a

a 8.1 n
=2 X, (8) + == SX,(S) + .. + S™X_(S) = n(s).
n 1 an 1 1

Taking the inverse Laplace transform yields#

(1)

a a a
o 1 n-1 . (n-1)
. Xl(t) t 3 Xl(t) oo b —/— X1 (t)
n n n
+ x, ™Me) = n(e)
and letting
= 3 -y (1)
X2 Xl = X1
_ (n-1)
X = %1%
we get
a
= 0 n-1
Xn = n(t) - —; X1 - - a, Xn
n
a’'x
* xln (t) = i
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Therefore writing in matrix notation we have

X = AX+Gn and y = M x
where {_ Eg‘
010...0 o\ .+ 9n
0o010. .0 . ' bk
A= . . G= M=-—a—
. . 0 n
_fe ce. _naa 1 \o
a a <
n n J 0 1

The equation for y comes from the definition for
X and the fact that

1
y(3) = Xl(S) 3

k
, (bo + b.S + .. + bks )

1

The above argument 1llustrates how to find the linear
differential equation that represents a given rational transfer
function. Therefore, if we can find a random process which is a

solution of the differential equation X = AX + Gn we also have
the random process y, since y = MT X.

3. SIMULATION OF THE RANDOM PROCESS(3)

It is known that
t

(1) X(8) = ¢(t,t)X(t ) +[ 6(t,T)G(In (D)t
t

o)

is the solution to i(t) = AX(t) + G(t) n(t), where to is an
arbitrary starting time and ¢(t,to) is the state transition
matrix. ¢(t,to) specifies the evolution of the system from
time to to time t, and has the following properties:



BELLCOMM, INC. -5 -

a. ¢(to,to) = I (identity matrix)
b. L (a(t,t ) = A . ¢(t,t )
*odt o) ’ * 7o

Since the eigenvalues of A have negative real parts#*
we know that for any finite t, ¢(t, -«) = 0. Also, using
relations (a) and (b) we see that

-l
-1
¢(t2,tl) =511 (SI-A)] t=t2—t1

Thus |SI-A| = 0 is the characteristic equation of the filter,

Now in expression (1), ¢(t,to) and G are

defined. Expression (1) indicates that the value of X for
any t>to depends on its value at to. Therefore we would 1like

to find a sample of the process X at to. For subsequent values
of t, we will need to find samples of the process

t
Z(t,to) = $(t,1)G(tIn(1)dx

t
o

Then by combining these samples as prescribed in (1), we would
obtain a sample of the random process X for any value of t.

Before proceeding with the discussion of the random
process, 1t is useful to point out that 1t is possible
to generate a random vector having any specified covariance
matrix. We will later use this fact in finding a sample of our
random process. If we are given any covariance matrix V (which
is nxn and symmetric), it is possible to find a lower triangular

matrix C such that V = CCT. If

%11 912 %1n €11 o0
O15 995 ’ €12 22
V = . and C =
. . 4 O
90 ° " Onn] €1n

¥A linear passive filter is assumed

c
ny
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then by multiplying CCT and setting the ijth element of CCT

equal to the ijth element of V, we obtain n! equations in n!
unknowns. Therefore if we are given a covariance matrix V,
and we find the above matrix C, it is possible to find a random

@y

vector which has covariance V. If w = represents a sample

w
n
of n numbers drawn independantly from a distribution which is

normal (0,1), then it is known that the distribution of w is
normal (0,I). If we define Z = Cw, Then

Cov (Z) = E(ZZT) = E(CwwiCT) = CE(wol)CY = cICT = v
and the distribution of Z is normal (0,V).

Now, returning to our main problem, in order to gen-
erate a sample of X(to) we will find cov (X(to)), and as above

generate a random sample with that covariance. We will also
find cov (Z(t,to)) and generate another random sample with that

covariance. We will then combine them as in (1) to produce a
vector X(t).

Cov (X(t,)) E(X(tO)XT(tO))

t
o

(e}
E ( ¢(tO,T)G(T)n(T)dT

-— OO

t t

o o
= E ( ¢(tO,T)G(T)ﬂ(T)NT(D)de)¢T(tO,p)dep

OO -0

¥Follows from equation (1) since ¢(to,—w) = 0.

T
¢(to,o)G(p)n(p)dp) )

t t
O o
J f 6 (0,6 [EG (On (o) ]dMe)eT (5 ,0)drdp

*
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Up to now we have said nothing about the random
process n(t). It is observed at this point that if one wants
only a starting point for a system with random input the above
equation is valid. For our purposes though we will assume
that n(t) is white noise, E(n(t)) = 0, and E(n(t), n(p)) = §(t-p).
This assumption reduces the above integral to

t
o

cov(X(t,)) = ¢(to,T)GGT$?to,r)dr

-0

In a similar manner we find

E jj’i¢(t,p)G(p)n(o)nT(T)GqET)¢T(t,T)d1do
tOJCO

t
¢(t,T)GGT¢I1‘2t, t)dt

]

Cov (Z(t,to))

t
o

Thus a sample X(to) is found, having its covariance
given by Cov (X(to)), and for any time t, a sample Z(t,to) is
found having covariance Cov (Z(t,to)). Then X(t) given by

X(t) = ¢(t,tO)X(to) + Z(t,to)

is a sample from a process which is a solution to the differential
equation

X = AX + Gn
A recursive formula, for to =0, is
X(nT) = ¢(nT,(n-1)T)X((n-1)T) + Z(nT,(n-1)T)

The autocorrelation function of y(t) 1s most easily
found by taking the inverse Fourier transform of S(w)-

4. TESTING THE SIMULATION

In order to check the simulation of such a process,
there are several sample statistics which will indicate whether
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the process being generated is indeed what we think it 1is.

These sample statistics and their distributions are derived
and discussed by J. L. Strand in Ref. 4. The sample statistics
which seem most useful are the sample mean and the sample
autocorrelation patrix

N
¥smyr yYam,
i=0
5(KT) = ok }: YDYT((v)T)

V=0
where Y is the output vector of the process belng generated.

The sample mean p has a normal distribution with
{E(u)=0} and variance

VGE) = gaple(0) + 2 Y Ggkperam
i=1
where p(iT) represents the autocorrelation matrix of Y for
t =47, 1 = 0, 1,...N.

The sample autocorrelation o (kT) is not normal but
for sufficiently large N*, it may be assumed to be so. For

any N, E(p(kT)) = p(kT), and

1

V(5 (RT) = k+1[ 100004500 + o4, (k)

Y (- o) (044 (VDp g (vD)

+ olj((v+k)T)pij((v-k)T4

where pij represents the ijth element of the autocorrelation

matrix p.

*#Central limit theorem
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Therefore, for sufficiently large N, it is possible
to use the standard deviation of the statlstics w and 7(kT) as
a yardstick to see how close their observed values are to their
desired values. N must be large since this type of test is
valid only for normal distributions.

5. EXAMPLE

For crew motion, it was initially assumed that

P(S) ks?

als) — (sTl+1)2(sT2+1)

The associated differential equation is

0 1 0 0
. 0 0 1 0
X = X + n
-1 —(12"'21'1) —(212+T1) 1
11212 11212 T1T2
y=(0 O L)%
T1 T2

The transition matrix is given by

t,-t

_ !
t,~t
2 1
+ Cij exp(- T )

where Aij’ Bij’ Cij are constants which depend only on T4 and
T,. After generating the solution X(t) (for k=1,rl=.318,
12=.0398, T=.01) and computing the test statistics H,o(T),

and p(0) and their distributions for N=1000, it was determined
that the simulation was acceptable. The results of the tests
appear in the following table.
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Error in such a simulation, assuming all programming
and hand calculations are correct, should be due only to
deficiencies in the random number generator.

1022-NIK~mef N. I. Kirkendall

Attachments
References
Trials
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